2353 shaares
À lire
À lire
À lire
Article intéressant: si j'échantillonne n individus et que je ne trouve aucun positif, quel est le risque maximum d'être positif ? Règle ici: on a 95% de chances que le risque soit inférieur à n/3 -- et en suivant le même raisonnement qu'eux, 86% de chances que le risque soit inférieur à n/2.
Logique : On cherche une confiance à 95% donc un niveau de confiance à 0.05. Du coup, on cherche 0.05^(1/n), ce qui correspond grosso modo à -log(0.05)/n ~= 3/n.
Vérif sous R:
set.seed(777)
n <- 10:100
p <- seq(0,0.5, length=1000)
g <- sapply(n, function(ni) {
m0 <- sapply(p, function(y) {
rb <- rbinom(100, prob=y, size=ni)
})
cs <- colSums(m0==0)
css <- cumsum(cs)/sum(cs)
p[max(c(1:length(css))[css<0.95])]
})
plot(n,g, xlab="Taille d'échantillon",
ylab="Prévalence correspondant à 95% des zéros")
lines(n, 3/n, col="red", lwd=2)
Vérif maths. On considère la série:
$$
\sum_{k=0} (z^k)/(k!) = \exp(z)
$$
On définit $z = \log(0.05)/n$, ce qui nous permet d'étendre $\exp z =
0.05^{1/n}$ de la façon suivante:
$$
0.05^{1/n} = \sum_{k=0} \frac{(log(0.05)^k)}{n^k k!}
$$
Si $n$ suffisamment grand, on arrondit à:
$$
0.05^{1/n} \approx \log(0.05)/n
$$
et $log(0.05) \approx 3$
En suivant le même raisonnement, si l'on fixe un intervalle à 86\%,
alors le seuil est à 2/n.
Logique : On cherche une confiance à 95% donc un niveau de confiance à 0.05. Du coup, on cherche 0.05^(1/n), ce qui correspond grosso modo à -log(0.05)/n ~= 3/n.
Vérif sous R:
set.seed(777)
n <- 10:100
p <- seq(0,0.5, length=1000)
g <- sapply(n, function(ni) {
m0 <- sapply(p, function(y) {
rb <- rbinom(100, prob=y, size=ni)
})
cs <- colSums(m0==0)
css <- cumsum(cs)/sum(cs)
p[max(c(1:length(css))[css<0.95])]
})
plot(n,g, xlab="Taille d'échantillon",
ylab="Prévalence correspondant à 95% des zéros")
lines(n, 3/n, col="red", lwd=2)
Vérif maths. On considère la série:
$$
\sum_{k=0} (z^k)/(k!) = \exp(z)
$$
On définit $z = \log(0.05)/n$, ce qui nous permet d'étendre $\exp z =
0.05^{1/n}$ de la façon suivante:
$$
0.05^{1/n} = \sum_{k=0} \frac{(log(0.05)^k)}{n^k k!}
$$
Si $n$ suffisamment grand, on arrondit à:
$$
0.05^{1/n} \approx \log(0.05)/n
$$
et $log(0.05) \approx 3$
En suivant le même raisonnement, si l'on fixe un intervalle à 86\%,
alors le seuil est à 2/n.
Super site pour identifier la faune, les coquillages, etc. sur l'estran, à la plage
À lire
À lire
gold.
marrant
marrant
À lire
À lire
À lire
Pour avoir les infos de résolution des images en pdf, utiliser pdfimages et pas identify. En clair:
pdfimages -list t.pdf
pdfimages -list t.pdf
Idées lecture
À lire
À lire
à lire (cf. fil twitter associé, ya pas mal de refs associées)
À lire